free webpage counters Astronomical constants: Your SEO optimized title page contents

Astronomical constants:

An astronomical constant is a physical constant used in astronomy. Formal sets of constants, along with recommended values, have been defined by the International Astronomical Union (IAU) several times: in 1964 and in 1976 (with an update in 1994). In 2009 the IAU adopted a new current set, and recognizing that new observations and techniques continuously provide better values for these constants, they decided to not fix these values, but have the Working Group on Numerical Standards continuously maintain a set of Current Best Estimates. The set of constants is widely reproduced in publications such as the Astronomical Almanac of the United States Naval Observatory and HM Nautical Almanac Office.

Besides the IAU list of units and constants, also the International Earth Rotation and Reference Systems Service defines constants relevant to the orientation and rotation of the Earth, in its technical notes.

The IAU system of constants defines a system of astronomical units for length, mass and time (in fact, several such systems), and also includes constants such as the speed of light and the constant of gravitation which allow transformations between astronomical units and SI units. Slightly different values for the constants are obtained depending on the frame of reference used. Values quoted in barycentric dynamical time (TDB) or equivalent time scales such as the Teph of the Jet Propulsion Laboratory ephemerides represent the mean values that would be measured by an observer on the Earth’s surface (strictly, on the surface of the geoid) over a long period of time. The IAU also recommends values in SI units, which are the values which would be measured (in proper length and proper time) by an observer at the barycentre of the Solar System: these are obtained by the following transformations:

Table of astronomical constants:

Quantity Symbol Value Relative
uncertainty
Defining constants
Gaussian gravitational constant k 0.017 202 098 95 A3/2S−1/2D−1 defined
Speed of light c 299 792 458 m s−1 defined
Mean ratio of the TT second to the TCG second 1 − LG 1 − 6.969 290 134×10−10 defined
Mean ratio of the TCB second to the TDB second 1 − LB 1 − 1.550 519 767 72×10−8 defined
Primary constants
Mean ratio of the TCB second to the TCG second 1 − LC 1 − 1.480 826 867 41×10−8 1.4×10−9
Light-time for unit distance τA 499.004 786 3852 s 4.0×10−11
Equatorial radius for Earth ae 6.378 1366×106 m 1.6×10−8
Potential of the geoid W0 6.263 685 60×107 m2 s−2 8.0×10−9
Dynamical form-factor for Earth J2 0.001 082 6359 9.2×10−8
Flattening factor for Earth 1/ƒ 0.003 352 8197
= 1/298.256 42
3.4×10−8
Geocentric gravitational constant GE 3.986 004 391×1014 m3 s−2 2.0×10−9
Constant of gravitation G 6.674 28×10−11 m3 kg−1 s−2 1.0×10−4
Ratio of mass of Moon to mass of Earth μ 0.012 300 0383
= 1/81.300 56
4.0×10−8
General precession in longitude, per Julian century, at standard epoch 2000 ρ 5028.796 195″ *
Obliquity of the ecliptic, at standard epoch 2000 ε 23° 26′ 21.406″ *
Derived constants
Constant of nutation, at standard epoch 2000 N 9.205 2331″ *
Unit distance = A A 149 597 870 691 m 4.0×10−11
Solar parallax = arcsin(ae/A) π 8.794 1433″ 1.6×10−8
Constant of aberration, at standard epoch 2000 κ 20.495 52″
Heliocentric gravitational constant = A3k2/D2 GS 1.327 2440×1020 m3 s−2 3.8×10−10
Ratio of mass of Sun to mass of Earth = (GS)/(GE) S/E 332 946.050 895
Ratio of mass of Sun to mass of (Earth + Moon) (S/E)
(1 + μ)
328 900.561 400
Mass of Sun = (GS)/G S 1.98855×1030 kg 1.0×10−4
System of planetary masses: Ratios of mass of Sun to mass of planet
Mercury 6 023 600
Venus 408 523.71
Earth + Moon 328 900.561 400
Mars 3 098 708
Jupiter 1047.3486
Saturn 3497.898
Uranus 22 902.98
Neptune 19 412.24
Pluto 135 200 000
Other constants (outside the formal IAU System)
Parsec = A/tan(1″) pc 3.085 677 581 28×1016 m 4.0×10−11
Light-year = 365.25cD ly 9.460 730 472 5808×1015 m defined
Hubble constant H0 70.1 km s−1 Mpc−1 0.019
Solar luminosity L 3.939×1026 W
= 2.107×10−15 S D−1
variable,
±0.1%

Add a Comment

Your email address will not be published. Required fields are marked *